Usage ===== Basic Usage ----------- mohituQ provides tools for modeling and optimizing ocean plastic cleanup operations using quantum and quantum-inspired algorithms. Running an Optimization ---------------------- You can run a sample optimization using the provided configuration: .. code-block:: bash python src/dqi_max_xorsat_implementation.py python src/implementingQAOA_N_by_N.py The configuration file specifies parameters such as: - Ocean current models - Plastic distribution data - Optimization objectives - Algorithm selection (DQI, QAOA, etc.) - Hardware backend (simulator or quantum device) Visualizing Results ------------------ After running an optimization, you can visualize the results: .. code-block:: bash python visualize.py --input results/sample_output.json This will generate visualizations showing: - Optimal placement of collection systems - Cleanup route optimization - Efficiency metrics - Comparison with baseline strategies Example Scripts -------------- The ``examples/`` directory contains sample scripts demonstrating various use cases: - ``examples/basic_optimization.py``: Simple optimization of collection points - ``examples/multi_objective.py``: Balancing multiple objectives (collection efficiency, cost, etc.) - ``examples/seasonal_variation.py``: Optimizing for seasonal changes in ocean currents - ``examples/real_data_integration.py``: Using real-world plastic distribution data API Reference ------------ For detailed API documentation, see the API section in the sidebar.