Usage
Basic Usage
mohituQ provides tools for modeling and optimizing ocean plastic cleanup operations using quantum and quantum-inspired algorithms.
Running an Optimization
You can run a sample optimization using the provided configuration:
python src/dqi_max_xorsat_implementation.py
python src/implementingQAOA_N_by_N.py
The configuration file specifies parameters such as:
Ocean current models
Plastic distribution data
Optimization objectives
Algorithm selection (DQI, QAOA, etc.)
Hardware backend (simulator or quantum device)
Visualizing Results
After running an optimization, you can visualize the results:
python visualize.py --input results/sample_output.json
This will generate visualizations showing:
Optimal placement of collection systems
Cleanup route optimization
Efficiency metrics
Comparison with baseline strategies
Example Scripts
The examples/
directory contains sample scripts demonstrating various use cases:
examples/basic_optimization.py
: Simple optimization of collection pointsexamples/multi_objective.py
: Balancing multiple objectives (collection efficiency, cost, etc.)examples/seasonal_variation.py
: Optimizing for seasonal changes in ocean currentsexamples/real_data_integration.py
: Using real-world plastic distribution data
API Reference
For detailed API documentation, see the API section in the sidebar.